China manufacturer CZPT UPVC Pin16 DIN8063 Pressure Pipes Fittings Reducing Socket or Reducing Coupling with Dvgw

Product Description

System:   PVC pipe system
Scope:    PVC pipework is used for the conveyance of drinking water, waste water, chemicals, heating fluid and cooling fluids, foodstuffs, ultra-pure liquids, slurries, gases, compressed air and vacuum system applications.
Specification:     PVC pipework is used for the conveyance of drinking water, waste water, chemicals, heating fluid and cooling fluids, foodstuffs, ultra-pure liquids, slurries, gases, compressed air and vacuum system applications.
Referenced Standards:     PN16
Specification: 

FAQ
1.What is your MOQ?
 Our MOQ is usually 5 CTNS.
 
2.What is your delievery time?
 The time of delievery is around 30-45days.
 
3.What is the shipping port?
 We ship the goods via HangZhou or ZheJiang port.
 
4.What is your payment terms?
 We accept 30% T/T in advance,70% in the period of shipment or 100% L/C.
 
5.How should I contact you?
 You can contact us with Trade Manager or send us an email by click Contact Supplier bottom.
 
6.What is the location of your company?
Our company is located in the HangZhou ZHangZhoug Province,China.
If you would like to have a visit, you are much welcome.
 
7.How about the samples?
We could send you the samples ,most samples are free to send to most places in China.If sent to other countries,transport fee shoule be paid by you.

After-sales Service: 50 Years
Warranty: 50 Years
Connection: Socket
Structure: Vertical
Flexible or Rigid: Rigid
Material: Plastic
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

China manufacturer CZPT UPVC Pin16 DIN8063 Pressure Pipes Fittings Reducing Socket or Reducing Coupling with Dvgw

pin coupling

Can Pin Couplings Be Used in Both Horizontal and Vertical Shaft Arrangements?

Yes, pin couplings can be used in both horizontal and vertical shaft arrangements. These couplings are designed to accommodate angular misalignment, parallel misalignment, and axial movement, making them versatile for various shaft orientations.

In horizontal shaft arrangements, where the shafts are aligned on the same horizontal plane, pin couplings can efficiently transmit torque while allowing for flexibility to accommodate minor misalignments and shaft movements. The pins and flexible elements in the coupling enable angular displacement and radial flexibility, ensuring smooth power transmission even if the shafts are not perfectly aligned.

In vertical shaft arrangements, where the shafts are aligned on a vertical plane, pin couplings can also be used effectively. The coupling design allows for axial movement, which is crucial in vertical applications where the shafts may experience expansion or contraction due to thermal changes or other factors. The flexible nature of pin couplings allows them to handle these axial movements without compromising the coupling’s performance.

Whether in horizontal or vertical arrangements, pin couplings are commonly used in various industrial applications, including pumps, compressors, conveyors, and other rotating machinery. They are known for their simplicity, ease of installation, and ability to provide reliable power transmission while accommodating misalignment and shaft movement.

When using pin couplings in either arrangement, it is essential to ensure proper alignment and regular maintenance to maximize their performance and service life. Additionally, considering factors like torque requirements, operating conditions, and environmental considerations will help in selecting the appropriate pin coupling for a specific application.

pin coupling

How Does a Pin Coupling Handle Angular, Parallel, and Axial Misalignment?

A pin coupling is designed to handle different types of misalignment, including angular, parallel, and axial misalignment. The unique construction of pin couplings allows them to accommodate these misalignments without compromising the efficiency and performance of the connected equipment.

1. Angular Misalignment: Angular misalignment occurs when the axes of the driving and driven shafts are not parallel but intersect at an angle. Pin couplings can tolerate angular misalignment because of their flexible and floating pin design. The two coupling halves are connected by a series of pins, which can pivot and move within the pin holes. This flexibility allows the coupling to bend slightly, adjusting to the angle of misalignment between the shafts.

2. Parallel Misalignment: Parallel misalignment happens when the axes of the driving and driven shafts are parallel, but they are laterally displaced from each other. Pin couplings can handle parallel misalignment to some extent due to the floating nature of the pins. The pins can move laterally within the pin holes, allowing the coupling to adapt to the offset between the shafts.

3. Axial Misalignment: Axial misalignment occurs when there is a linear displacement along the axis of one shaft concerning the other. While pin couplings primarily focus on handling angular and parallel misalignment, they may offer limited axial misalignment capabilities. The floating pins provide a small degree of axial movement, but excessive axial misalignment is best avoided to prevent additional stresses on the coupling.

It is important to note that while pin couplings can accommodate some degree of misalignment, excessive misalignment should be avoided to prevent premature wear and potential failure of the coupling and connected equipment. Regular inspection and maintenance can help identify and address any misalignment issues, ensuring the optimal performance and longevity of the pin coupling in power transmission applications.

pin coupling

Understanding Pin Couplings and Their Functionality

A pin coupling, also known as a shear pin coupling, is a type of mechanical coupling used to connect two rotating shafts in a mechanical system. It is designed to transmit torque while allowing for a limited amount of angular misalignment between the shafts. The primary function of a pin coupling is to protect the connected equipment from torque overload and prevent damage to the shafts and other components in case of sudden shock or overload.

How a Pin Coupling Works:

A typical pin coupling consists of two hubs, one on each shaft to be connected, and a series of pins that pass through the hubs to join them together. The pins are usually made of a softer material than the hubs, such as brass or aluminum, to act as sacrificial elements. The number and size of the pins depend on the coupling’s torque rating and the required angular misalignment capacity.

When the shafts are misaligned, the pins experience shear stress as they bend under the applied load. In normal operating conditions, the pins remain intact and allow the torque to transfer from one shaft to another. However, in the event of an overload or excessive misalignment, the pins will shear off, preventing the transmission of excessive torque and protecting the connected equipment from damage.

After shearing, the damaged pins can be easily replaced, and the coupling can be put back into service without major repairs to the equipment. This feature makes pin couplings particularly suitable for applications with varying operating conditions and environments where shock loads or sudden overloads may occur.

Advantages of Pin Couplings:

Protection against Overload: The shear pins act as a safety feature, protecting the connected equipment from excessive torque and sudden shocks.

Misalignment Tolerance: Pin couplings can accommodate a limited amount of angular misalignment between the shafts.

Easy Replacement: After shearing, the damaged pins can be quickly replaced, reducing downtime and maintenance costs.

Versatility: Suitable for a wide range of applications, including pumps, compressors, and other industrial machinery.

Cost-Effective: The sacrificial pins are cost-effective components that can be easily replaced, avoiding costly repairs to the main equipment.

Limitations:

– Pin couplings have lower torque capacities compared to some other coupling types, such as gear couplings or rigid couplings.

– The need to replace the shear pins after each failure may lead to frequent maintenance requirements in applications with frequent overloads or misalignments.

In summary, pin couplings offer a reliable and cost-effective solution for torque transmission and protection against overloads in various mechanical systems. Their ability to accommodate misalignment and absorb shock loads makes them suitable for a wide range of industrial applications.

China manufacturer CZPT UPVC Pin16 DIN8063 Pressure Pipes Fittings Reducing Socket or Reducing Coupling with Dvgw  China manufacturer CZPT UPVC Pin16 DIN8063 Pressure Pipes Fittings Reducing Socket or Reducing Coupling with Dvgw
editor by CX 2023-09-14

pin bush coupling

As one of leading pin bush coupling manufacturers, suppliers and exporters of mechanical products, We offer pin bush coupling and many other products.

Please contact us for details.

Mail: sales@pin-bush-coupling.com

Manufacturer supplier exporter of pin bush coupling

Recent Posts